Pannexin 1 Channels Play Essential Roles in Urothelial Mechanotransduction and Intercellular Signaling
نویسندگان
چکیده
Urothelial cells respond to bladder distension with ATP release, and ATP signaling within the bladder and from the bladder to the CNS is essential for proper bladder function. In other cell types, pannexin 1 (Panx1) channels provide a pathway for mechanically-induced ATP efflux and for ATP-induced ATP release through interaction with P2X7 receptors (P2X7Rs). We report that Panx1 and P2X7R are functionally expressed in the bladder mucosa and in immortalized human urothelial cells (TRT-HU1), and participate in urothelial ATP release and signaling. ATP release from isolated rat bladders induced by distention was reduced by the Panx1 channel blocker mefloquine (MFQ) and was blunted in mice lacking Panx1 or P2X7R expression. Hypoosmotic shock induced YoPro dye uptake was inhibited by MFQ and the P2X7R blocker A438079 in TRT-HU1 cells, and was also blunted in primary urothelial cells derived from mice lacking Panx1 or P2X7R expression. Rinsing-induced mechanical stimulation of TRT-HU1 cells triggered ATP release, which was reduced by MFQ and potentiated in low divalent cation solution (LDPBS), a condition known to enhance P2X7R activation. ATP signaling evaluated as intercellular Ca2+ wave radius was significantly larger in LDPBS, reduced by MFQ and by apyrase (ATP scavenger). These findings indicate that Panx1 participates in urothelial mechanotransduction and signaling by providing a direct pathway for mechanically-induced ATP release and by functionally interacting with P2X7Rs.
منابع مشابه
Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication.
Tendon and other connective tissue cells are subjected to diverse mechanical loads during daily activities. Thus, fluid flow, strain, shear and combinations of these stimuli activate mechanotransduction pathways that modulate tissue maintenance, repair and pathology. Early mechanotransduction events include calcium (Ca2+) signaling and intercellular communication. These responses are mediated t...
متن کاملPannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins.
Pannexins are mammalian orthologs of the invertebrate gap junction proteins innexins and thus have been proposed to play a role in gap junctional intercellular communication. Localization of exogenously expressed pannexin 1 (Panx1) and pannexin 3 (Panx3), together with pharmacological studies, revealed a cell surface distribution profile and life cycle dynamics that were distinct from connexin ...
متن کاملPannexin 1 Modulates Axonal Growth in Mouse Peripheral Nerves
The pannexin family of channels consists of three members-pannexin-1 (Panx1), pannexin-2 (Panx2), and pannexin-3 (Panx3) that enable the exchange of metabolites and signaling molecules between intracellular and extracellular compartments. Pannexin-mediated release of intracellular ATP into the extracellular space has been tied to a number of cellular activities, primarily through the activity o...
متن کاملEvaluation of CD98 Expression in Normal and Osteoarthritic Human Articular Chondrocytes
Background: Recent studies have provided evidence that integrins play roles in recognition of mechanical stimuli and its translation into a cellular response. Integrin signaling may be regulated by a number of mechanisms including accessory proteins such as CD98 (4F2 antigen). Objectives: To determine CD98 expression by human articular chondrocytes and its involvement in human articular mechano...
متن کاملATP Release Channels
Adenosine triphosphate (ATP) has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014